
MISSING ERROR FLAG
by Dave Appleby
In both ANSI C 3 and 4, the �no error� flag
used for error windows is missing from the
wimp.h header. It can be added to the
wimp_errflags enum in wimp.h as:

wimp_ENOERROR=16
or #defined as required, enabling
wimp_reporterror() to be used as an
information window as well as for error
reporting.

MYSTERIOUS DISAPPEARANCES
by David Pilling
Sometimes application programs will vanish,
with no stack backtrace or error box. One
cause of this is the C file library.

If your application�s WimpSlot is only just big
enough, then it seems that opening files
causes the C library to run out of space. The
problems only show up when files are
closed. At this point the C library prints (in
text mode) that it has run out of memory,
and kills the task stone dead. So the tip is, if
you suffer from disappearing programs,
press F12, and open a spool file (*spool
trace), then go through the steps that cause
the trouble. Close the spool file (with
*spool), and load it into Edit and look for any
hidden messages from the C library (usually
bracketed with a couple of **s). The spool
file will trap all VDU output, and thus the
helpful messages which were printed
somewhere off screen.

POINTER TROUBLE
by Lee Calcraft
The information given about RISC_OSLib
functions in the ANSI C manuals is
excessively concise, and can lead to slip-
ups on the user s part. For example, you
need to take care when a function requires a
pointer to an empty structure, into which it

will put a result. Thus with:
wimp_get_caret_pos(wimp_caretstr *)

it is no good simply defining a suitable
(wimp_caretstr *) pointer, and passing this -
your program would soon crash. You must
define a wimp_caretstr structure, and then
pass the pointer to this to the function.

As a guide, if RISC_OSLib is going to
provide memory for a particular structure,
the function concerned usually returns the
structure, as with dbox_new() for example,
which returns a dbox.

IMPROVED TRACE MACROS
by Chris Wilmott
The following macros provide a better trace
facility than that offered in ANSI C. They
display formatted debugging output at a
particular screen line on the Desktop.

To use the feature, include the macros at the
start of a source, or in a header, then use
#define TRACE 1. Otherwise #define TRACE
0, in which case no trace code is compiled.

As an example, the following:
show3(8,"Mouse x=%d y=%d ",\

d->m.x,d->m.y);
might be used to display the mouse co-ordinates
on line 8 of the screen. Use show1() if you
have one parameter to pass to printf(),
show2() if you have two or show3() if you
have 3.

#include "bbc.h"
#include <stdio.h>

#if TRACE
#define tron(a) bbc_vdu(4); bbc_vdu(26);\

bbc_vduq(31,0,a)
#define troff(void) bbc_vdu(5)
#define show1(a,b) {tron(a); printf(b);\

troff();}
#define show2(a,b,c) {tron(a);\

C Notebook
Hints and Queries

Compiled and Linked by Lee Calcraft

printf(b,c); troff();}
#define show3(a,b,c,d) {tron(a);\

printf(b,c,d); troff();}
#else
#define show1(a,b)
#define show2(a,b,c)
#define show3(a,b,c,d)
#endif

Please send us your C hints - all published
hints will be paid for.

RRRR

